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Olive oil fluorescence is related to oil composition. Here it is shown that the natural clustering of
different types of commercial Spanish olive oils depends on their fluorescence excitation-emission
matrices (EEMs). Fifty-six commercial samples of olive oil (29 virgin olive oils, 20 pure olive oils, and
7 olive-pomace oils) were used. The clustering method was hierarchical agglomerative clustering
using the Euclidean distance as a similarity measure and the average linkage. Two spectral ranges
were considered (which either contained the fluorescence peak of the chlorophylls or did not), and
various methods for preprocessing the fluorescence spectra were compared. The oils were clearly
distinguished using the unfolded EEMs measured between λex ) 300-400 nm and λem ) 400-600
nm. The optimal preprocessing was normalization of the unfolded spectra followed by column
autoscaling. Also shown are the advantages of using second-order data (EEMs) instead of first-
order data (a single fluorescence spectrum) for each sample.
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INTRODUCTION

Food science is receiving more and more attention because
of its close relationship with health. Chemometric techniques
applied to analytical data have proved to be important tools in
food analysis, because they can be used for exploratory analysis
and classification (1-4). Olive oil is an economically important
product. It is obtained from the fruit of the olive tree (Olea
europaeaL.). There are different types of olive oils, with virgin
olive oil being the one with the best quality. The characteristic
odor and flavor of virgin olive oil are due to the olives being
mechanically pressed and the lack of any refining processes.
Refined olive oil is obtained from virgin olive oil with refining
methods that do not lead to alterations in the initial glyceridic
structure. This oil does not have adequate organoleptic proper-
ties. Hence, it is blended with virgin olive oil to form pure olive
oil (or simply olive oil). By extracting the olive-pomace (i.e.,
the olive residue remaining from previous pressings) with
authorized solvents, refined olive-pomace oil is obtained. This
oil is improved with edible virgin oil to obtain the oil known
as olive-pomace oil (4,5).

Olive oil has been analyzed with such techniques as chro-
matography (6,7), mass spectrometry (MS) (4), and a variety
of spectroscopic techniques: infrared (IR) and Fourier transform
(FT)-Raman (8-11), nuclear magnetic resonance (NMR)
(9, 12, 13), fluorescence (14-17), and chemiluminescence (18).
The advantages of fluorescence spectroscopy are its speed of

analysis and the fact that solvents and reagents are not required,
because olive oil exhibits natural fluorescence (14, 15). Other
interesting advantages are that only a small amount of sample
is needed and that it is a nondestructive technique. However,
fluorescence applied to olive oil has been explored only very
little, basically using a fluorescence emission spectrum recorded
at one excitation wavelength (first-order data) (14, 15). Nev-
ertheless, it is also possible to record entire fluorescence
excitation-emission matrices (EEMs), which consist of emis-
sion spectra measured at different excitation wavelengths
(second-order data). Wolbeis and Leiner (16) used EEMs to
characterize four types of edible oils. Scott et al. (17) applied
pattern recognition methods to fluorescence EEMs to discrimi-
nate between four types of vegetable oils and to detect
adulterations in extra virgin olive oils.

Cluster analysis (CA) is a pattern recognition technique used
to form groups of objects having variables of similar values.
Several similarity measures can be applied to form such groups
(19, 20). The main advantage of CA over visualization
techniques such as principal component analysis (PCA) is that
it provides numerical values of the similarity between objects.
As a result, the information is more objective (19, 20). In
addition, when a large number of principal components (PCs)
are required to visualize the information, CA has the advantage
of reducing dimensionality while keeping the information. In
many cases, the joint use of both visualization and clustering
techniques is recommended (19). In the field of olive oil
analysis, clustering has been applied to many different forms
of data for many different reasons. It has been used with
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chromatographic data to characterize the stage of ripeness of
virgin olive oil by determining the content of volatile compounds
(3). With IR and FT-Raman spectroscopic data, it has been used
to detect the adulteration of virgin olive oil (10, 11), and with
visible and near-IR spectroscopic data, it has made a geographic
classification of Mediterranean extra virgin olive oils (21). With
NMR spectroscopic data it has been used to study the effects
of climatic conditions on olive oil (12) and to geographically
categorize virgin olive oils (13). Finally, it has been used with
sensory, chromatographic, and MS data to differentiate virgin
olive oils on the basis of the extraction methodology adopted
during industrial olive oil processing (22). However, there are
no references to applications of CA to discriminate between
different types of oils using fluorescence data.

The objective of this paper is to test the ability of CA to
discriminate between the three main types of commercial
Spanish olive oils used for human consumption (virgin, pure,
and olive-pomace oil) using EEMs as fingerprints. We applied
the hierarchical agglomerative clustering (HAC) method with
the Euclidean distance as a similarity measure and the average
linkage method (19, 20) to the unfolded EEMs. Different
preprocessing methods and EEM ranges were tested to find the
most appropriate way of handling data and optimizing the
sample grouping into clusters. Then we compare the results
obtained from the EEMs to those obtained from a single
fluorescence spectrum. This spectrum is selected as the one that
maximizes the differences among samples. We show that the
oils are best grouped into types when EEMs are used instead
of single fluorescence spectra.

MATERIALS AND METHODS

Samples.A set of 56 olive oil bottles containing three different types
of edible Spanish olive oils (29 virgin, 20 pure, and 7 olive-pomace
oils) (Table 1) were purchased in a shopping center. Although they
were not reference samples, they were suitable for the exploratory
purposes of this study. Most of them were well-known Spanish brands,
and some even prestigious. The samples were stored in the dark at
room temperature until the moment of analysis. The samples were
analyzed without any prior treatment.

Instrumentation and Software. Oil EEMs were measured with an
Aminco Bowman series 2 luminescence spectrometer equipped with a
150 W xenon lamp and 10 mm quartz cells. The instrument detector
was operated using the EmL/Ref channel and applying a 600 V voltage
for virgin and pure olive oil samples. However, P32 and olive-pomace
oil samples were measured at 580 and 560 V, respectively, to avoid
detector saturation. Excitation and emission ranges wereλex ) 300-
400 nm andλem ) 400-700 nm, respectively. Measuring emission
wavelengths above excitation wavelengths prevented Rayleigh scatter.
The step size and band-pass of both monochromators were 5 and 4
nm, respectively. The scan rate was 30 nm s-1. The instrument software
was used to correct the EEMs for deviations in the ideality of the lamp,
monochromators, and detector (23, 24). As a result, the last emission
wavelength was lost and the final ranges wereλex ) 300-400 nm and
λem ) 400-695 nm.

Data were processed with Matlab software (version 6.0) (25), and
dendrograms were constructed from the Matlab statistics toolbox (25).
PCA models were validated using Unscrambler software (version 8.0)
(26).

Algorithm for Selecting the Most Discriminatory Wavelengths.
Olive oil can be characterized by means of fluorescence spectroscopy.
This has usually been done with emission spectra measured at one
excitation wavelength (14,15). Here we checked whether EEMs would
make the clustering better than when a single fluorescence spectrum
was used for each sample. Because we had recorded the EEMs, we
applied the following algorithm to select the most discriminatory
excitation wavelength (λex):

1. Take the fluorescence emission spectrum atλex ) 300 nm of every
sample from the EEMs and make them the rows in a matrixQ.

2. Normalize each row ofQ (qi) to length one (27) to obtainQN,
that is,qNi )(qi/(qiqi

T)1/2), where T means transposed andqNi is theith
row of QN.

3. Column mean-centerQN to obtainQNC, that is, calculate the mean
of each column ofQN and subtract it from every value in the column.

4. Calculate the sum of the squares (SS) of all the elements ofQNC.
This SS value represents the differences between each fluorescence
emission spectrum atλex ) 300 nm and the average spectrum.

5. Repeat steps 1-4 for the rest ofλex.
Hence, for eachλex, a value of SS was obtained. Theλex giving the

highest SS was considered to be the most discriminatory of all the
excitation wavelengths tested. To find the emission wavelength (λem)
that best distinguished the types of oils, a similar procedure was used,
but this timeQ contained the fluorescence excitation spectrum of each
sample at oneλem.

RESULTS AND DISCUSSION

EEMs. Figure 1 shows the average EEMs of the three types
of oils studied in the rangesλex ) 300-400 nm andλem )
400-695 nm. Virgin and pure olive oil spectra look similar
due to their high peak betweenλex ) 300-400 nm andλem )
650-695 nm, which is attributed to chlorophylls (14, 15). In
the olive-pomace oil EEMs, this peak is much less intense and
an intense peak appears betweenλex ) 340-400 nm andλem

) 400-550 nm, which is attributed to oxidation products (14).
Oxidation products are formed when oil comes in contact with
oxygen. The process of oxidation of olive oil involves radical
reactions between oxygen and the double bonds of unsaturated
fatty acids. Light accelerates this process. As a result, conjugated
hydroperoxides are formed. These compounds are unstable, and
they quickly decompose into aldehydes and ketones (5).

Because the chlorophyll peak may hamper oil differentiation
(28), the EEMs without this peak (λex ) 300-400 nm,λem )
400-600 nm) were also considered (Figure 2). In this range,

Table 1. Samples

samplea olive variety origin

V1 Arbequina La Palma d’Ebre (Tarragona)
V2 Arbequina Reus (Tarragona)
V3 Arbequina La Serra d’Almos (Tarragona)
V4 Arbequina Llorenç del Penedès (Tarragona)
V5 Jaén
V6 Granada
V7 Jaén
V8 Hojiblanca, Arbequina Córdoba
V9 Hojiblanca Málaga
V10 Picual, Hojiblanca Córdoba
V11 Picual, Hojiblanca, Picuda Córdoba
V12 Sevilla
V13 Arbequina Tàrrega (Lleida)
V14 Arbequina Tàrrega (Lleida)
V15 Arbequina Reus (Tarragona)
V16 Arbequina Córdoba
V17 Arbequina Les Borges Blanques (Lleida)
V18 Arbequina, Cornicabra,

Hojiblanca
Jaén

V19 Hojiblanca Tàrrega (Lleida)
V20 Hojiblanca Tàrrega (Lleida)
V21 Picual Tàrrega (Lleida)
V22 Picual Tàrrega (Lleida)
V23 Jaén
V24 Córdoba
V25 Málaga
V26 Sevilla
V27 Tortosa (Tarragona)
V28 Córdoba
V29 Morrut, Farga, Sevillano Montsià (Tarragona)
P30−49 different areas of Spain
OP50−56 different areas of Spain

a V, virgin olive oil; P, pure olive oil; OP, olive-pomace oil.
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the EEMs of the studied oils have considerable differences
(Figure 2). The shape of virgin olive oil EEMs (Figure 2a) is
mainly due to vitamin E, which emits betweenλex ) 300-400
nm andλem ) 500-600 nm, whereas pure and olive-pomace
oil samples have a larger content of oxidation products, which
give rise to a broad peak at lower emission wavelengths (14).
The different position of this peak on pure and olive-pomace
EEMs enables us to distinguish between them (Figure 2b,c).

To perform CA on the full range of EEMs, the matrices were
stacked in a three-way array of 56× 21 × 60 (samples× λex

× λem) and the EEMs without the chlorophylls in a three-way
array of 56× 21 × 41 (samples× λex × λem).

Cluster Analysis of Unfolded EEMs.The HAC method was
applied to the EEMs in the two ranges indicated above (with
and without the chlorophyll peak). In both cases, each three-
way array was first unfolded to a matrix of size [samples×
(λex × λem)], where each row contained the unfolded EEM of
a sample. These rows were then normalized to length one (27)
to avoid variations due to differences in intensity, and the
resulting matrix was column autoscaled (i.e., every column of
the matrix was set to zero mean and unit variance).

EEMs Containing the Chlorophyll Peak.After unfolding of
the full-range three-way array, a 56× 1260 matrix was obtained;
the rows were samples and the columns were the excitation and
emission wavelengths. Neither the raw matrix nor the matrix

Figure 1. Average EEMs between λex ) 300−400 nm and λem ) 400−
695 nm: (a) virgin olive oil; (b) pure olive oil; (c) olive-pomace oil.

Figure 2. Average EEMs between λex ) 300−400 nm and λem ) 400−
600 nm: (a) virgin olive oil; (b) pure olive oil; (c) olive-pomace oil.
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preprocessed as indicated above provided a good distinction
between the three types of oils. Two other preprocessing
methods were also tested: row normalization to length one only
(27) and normalization to length one followed by scaling within
emission mode (29). However, the results did not improve. The
reason was that the chlorophyll peak had large variations, even
between samples of the same type. A previous study based on
unfolded principal component analysis and parallel factor
analysis (28) had already shown that the chlorophyll peak
hampered oil separation. The inclusion of the chlorophyll peak
caused a larger overlap between the groups. For this reason,
the results for the EEMs will henceforth be shown in the ranges
λex ) 300-400 nm andλem ) 400-600 nm, without the
chlorophyll peak.

EEMs without the Chlorophyll Peak.The unfolding of the
three-way array not containing the chlorophyll peak led to a 56
× 861 matrix. The same three preprocessing methods used for
the full-range matrices were tested. Then HAC was applied.
Results were best when the matrix was normalized and column
autoscaled. PCA was also calculated for this matrix to determine
the number of variability sources in the data and to find what
wavelengths caused the main differences between the types of
olive oils. The PCA model was validated by leave-one-out cross-
validation, and seven PCs (98.9% of explained variance) were
found to be significant. However, the greatest differences
between the types of oils could be seen from the score plot
using the first two PCs (84.7% of explained variance (Figure
3). The three types of oils are separated mainly along PC1.
Olive-pomace oils have the most negative scores and virgin olive
oils the most positive scores. The loadings inFigure 4 indicate
that a high score in PC1 is related to a high content in vitamin
E and a low content in oxidation products. This is concluded
from the two main regions inFigure 4a. The region with
positive values (region 1, aroundλex ) 300-380 nm andλem

) 500-600 nm) is related to vitamin E, which emits fluores-
cence in this range (seeFigure 2a). The region with negative
loadings (region 2, aroundλex ) 340-400 andλem ) 400-
480 nm) is related to oxidation products, mainly those present
in olive-pomace oils (seeFigure 2c). Thus, the positive scores
of virgin olive oils on PC1 indicate that they have a high vitamin
E content and fewer oxidation products than the other oils. PC2
does not separate the groups as well as PC1, but pure olive oils

tend to have negative scores, whereas the rest of the oils tend
to have positive scores. The wavelengths that most influence
PC2 are in region 3, aroundλex ) 300-380 nm andλem )
400-550 nm (Figure 4b). This region has negative loadings
and is related to the oxidation products of pure olive oils (see
Figure 2b). Hence, a sample with negative scores on PC2 has
a higher content on this type of products. Olive-pomace oil
samples are very different from the rest on both PCs, and in
general their scores are the lowest on PC1 and the highest on
PC2. Only a few samples (V25, V28, V29, and OP52) appear
separated from their oil group. This indicates that they are
probably extreme examples of their sample type.

The CA dendrogram showed the three types of oils perfectly
separated (Figure 5). The cophenetic correlation coefficient
(Coph.r) was used as an indication of the cluster validity (25,
30). It measures the correlation between the linked objects in
the cluster tree and the distances between objects. A Coph.r
close to one indicates that the cluster solution reflects the
similarity between objects before the tree is built. In this case,
Coph.r ) 0.7. Thus, the solution was quite good. As in PCA,
the largest differences are between olive-pomace oils and the
rest. These two clusters merge at a dissimilarity level of 75%.
Slightly below this level (dotted line), the dendrogram shows
three well-differentiated clusters, each of which contains all of
the samples of one of the types of oils studied. Even samples
V25, V28, and V29 are grouped in the expected cluster.
However, because the number of samples of olive-pomace oil
is much smaller than the others, this result must be seen as a

Figure 3. Score plot from PCA on the 56 × 861 unfolded matrix [samples
× (λex × λem)], containing the spectra measured between λex ) 300−400
nm and λem ) 400−600 nm: (]) virgin olive oil: (/) pure olive oil; (×)
olive-pomace oil (normalized and autoscaled spectra).

Figure 4. Loading plot from PCA on the 56 × 861 unfolded matrix
[samples × (λex × λem)], containing the spectra measured between λex )
300−400 nm and λem ) 400−600 nm: (a) PC1; (b) PC2 (normalized
and autoscaled spectra).
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trend and not as a general conclusion about the application of
this method to olive-pomace oils. The sample source is also a
limitation. Hence, the relevance of these clustering results must
be considered, taking into account the facts that the samples
were purchased in shopping centers and that they are not
reference samples. Thus, we have only the information given
by the suppliers on the label of the sample bottles.

Clustering Based on Selected Fluorescence Spectra.To
determine whether the same information could be obtained by
using a single fluorescence spectrum for each sample instead
of the whole EEM, we applied the variable selection algorithm
described under Materials and Methods to find the most
discriminatory fluorescence excitation and emission spectra.

The most discriminatory variables were selected from the
rangesλex ) 300-400 nm andλem ) 400-600 nm. In all cases,
after the variables had been selected, two preprocessing methods
were applied to spectra taken from raw EEMs: normalization
to length one (27) and normalization to length one plus column
autoscaling. Then CA was applied.

Clustering Based on Emission Spectra.To find the excitation
wavelength that provided the main differences between fluo-
rescence emission spectra, the variable selection algorithm was
applied for eachλex. Hence, for eachλex a 56× 41 (samples×
λem) matrix was built, and the algorithm was run on each matrix.
The SS value was maximum forλex ) 345 nm. Hence, CA
was applied to the emission spectra betweenλem ) 400 and
600 nm atλex ) 345 nm (Figure 6a). The results were worse
than when the 56× 861 unfolded matrix was used. In both
cases, the dendrograms displayed two large clusters, one of
which contained all pure and olive-pomace oil samples and V25.
Therefore, it was not possible to distinguish the oil types on
the basis of the selected wavelengths. To test whether fluores-
cence emission spectra measured at other excitation wavelengths
could improve oil clustering, the HAC method was again applied

to the emission spectra atλex ) 365 nm [see Kyriakidis et al.
(14)] and λex ) 390 nm, which was close to the excitation
wavelength proposed by Marini et al. (λex ) 392 nm) (15).
However, both preprocessing methods applied to these sets of
spectra led to dendrograms that contained clusters with mixtures
of samples of different types.

Clustering Based on Excitation Spectra.To find the emission
wavelength that provided the main differences between fluo-
rescence excitation spectra, the variable selection algorithm was
applied again, this time for eachλem. Hence, for eachλem a 56
× 21 (samples× λex) matrix was built, and the algorithm was
run on each matrix. The difference was maximum forλem )
410 nm. Hence, CA was applied to the excitation spectra
betweenλex ) 300 and 400 nm atλex ) 410 nm (Figure 6b).
When only normalization was carried out, virgin olive oil
samples V12, V14, and V29 could not be distinguished from
the pure olive oil cluster and samples V28 and OP52 were very
different from the rest of samples, joining the olive-pomace oil
cluster. Autoscaling provided a dendrogram similar to the
previous one. The most noteworthy difference is that V29 was
the only virgin olive oil sample that remained in the pure olive
oil cluster.

Conclusions.This work has shown the potential of fluores-
cence spectroscopy to distinguish three types of commercial
Spanish olive oils (virgin, pure, and olive-pomace). Visual
inspection of the EEMs of samples makes it possible to assign
a large number of samples to the expected type. However,
special characteristics, such as different olive oil varieties or
the high deterioration of some virgin olive oil samples, may
cause considerable variations in the shape of EEMs and thus
hamper type differentiation. We used samples whose member-
ship is stated in order to study the ability of the HAC method
to cluster olive oil samples of different types. Different
preprocessing methods and wavelength ranges were compared,

Figure 5. Dendrogram of the 56 × 861 unfolded matrix (λex ) 300−400 nm, λem ) 400−600 nm) using the Euclidean distance as similarity measure
and the average linkage method. The distance is expressed as a percentage of dissimilarity (normalized and autoscaled spectra).
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and the results were best with the normalized and autoscaled
unfolded matrix obtained from the EEMs betweenλex ) 300-
400 nm andλem ) 400-600 nm. Under these conditions, the
samples were perfectly grouped. We also developed an algo-
rithm for variable selection to find the most discriminatory
emission and excitation spectra. However, the use of a single
fluorescence spectrum worsened the grouping. These results
indicate that working with second-order data is more advanta-
geous than working with first-order data, because the larger
number of variables used contains additional information that
increases discrimination power.

The results obtained here might lay the foundations for
developing and applying classification methods to the EEMs
of olive oils. Possible applications are olive oil characterization
or the detection of frauds.

ABBREVIATIONS USED

CA, cluster analysis; EEM, excitation-emission matrix; FT,
Fourier transform; HAC, hierarchical agglomerative clustering;
IR, infrared; MS, mass spectrometry; PC, principal component;
PCA principal component analysis.
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